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Abstract—The unprecedented amounts of data generated
from large scientific simulations impose a grand challenge
in data analytics, and I/O simply becomes a major perfor-
mance bottleneck. To address this challenge, we present an
application-aware I/O optimization technique in support of
interactive large-scale scientific visualization. We partition a
scientific data into blocks, and carefully place data blocks in
a memory hierarchy according to a characterization of data
access patterns of user visualization operations. We conduct
an empirical study to explore the parameter space to derive
optimal solutions. We use real-world large-scale simulation
datasets to demonstrate the effectiveness of our approach.

Keywords-I/O optimization; scientific visualization; data re-
placement; large-scale data.

I. INTRODUCTION

Researchers have devoted substantial efforts to develop

efficient executions of simulations on petascale or next-

generation exascale machines. However, it remains a grand

or even greater challenge to visualize and interpret large

simulation data. First, I/O speed is significantly lagging

behind computing speed and the data size generated from

scientific applications keeps increasing [11]. Transferring

large data across a deep memory hierarchy to carry out

visualization calculations simply becomes the main bot-

tleneck for an interactive visualization pipeline. Second,

data access patterns can be dramatically different from user

visualization operations and be dynamically changed across

hierarchical memory levels. Therefore, it is particularly diffi-

cult to identify data access patterns for large-scale interactive

visualization.

Many sophisticated techniques have been developed to

address the fundamental data locality issue and improve data

movement efficiency. However, most traditional approaches

target generic solutions, less consider application character-

istics, and thus are difficult to achieve optimal performance

for large-scale scientific applications. Recent efforts have

been perceived to incorporate domain knowledge to optimize

data movement and enhance the scalability of end-to-end

scientific workflows [18], [15]. However, these approaches

mainly investigated data access patterns of simulations, and

only considered relatively simple data analysis operations.

In this paper, we first characterize data access patterns

of visualization, and leverage application knowledge to

derive a novel scheme to predict data access during user

interactive operations. Our prediction method is effective

even when a user randomly or nearly randomly accesses data

in 3D. Based on the prediction results, we develop a data

replacement policy to exploit data locality and minimize data

movement across multiple levels of a memory hierarchy.

We have evaluated our approach on machines with mul-

tiple hierarchical memory levels and compared it with the

traditional methods, including First-In-First-Out (FIFO) and

Least Recently Used (LRU). The experimental results have

shown that our method can achieve superior performance in

support of interactive visualization.

II. RELATED WORK

The out-of-core techniques have been exploited in I/O-

efficient volume rendering, isosurface computation, and

streamline computation [12]. For example, in order to op-

timize streamline tracing in large unstructured data, Ueng

et al. [16] proposed a top-down out-of-core preprocessing

algorithm that built an octree partition to restructure un-

structured grids and then loaded the octree cells on demand.

However, this method required to replicate a cell on the

octree nodes that the cell may intersect. Leutenegger and

Ma [7] proposed to use R-trees to solve the imbalance

problem in the structure of octree to optimize searching

operations on large unstructured datasets. Pascucci and

Frank [10] used a space-filling curve for data layout and

indexing that can be simply and efficiently computed by bit

masking, shifting and addition. This method can be easily

used for the multi-resolution computation of arbitrary slices

of very large datasets. Sutton and Hansen [14] proposed

the T-BON (Temporal Branch-On-Need Octree) technique

for fast extraction of isosurfaces of time-varying datasets.

Isenburg et al. [6] used mesh simplification as an example to

show how to adapt out-of-core mesh processing techniques

to perform their computations based on the new processing

sequence paradigm. Although these out-of-core techniques

make it possible to visualize a large dataset with a reduced

I/O cost, most of them require expensive pre-processing
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Figure 1. A scientific visualization process using a combustion simulation
data.

steps, such as conducting some form of data duplication,

or building multi-resolution representations.

Caching and prefetching heuristics are also commonly

used to reduce the number of the cache miss and the I/O

cost.They have been extensively investigated for computer

systems. The main aim of these studies is to minimize

different cost metrics, such as miss ratio, total cost, and

average latency. Belady [1] discussed replacement algo-

rithms based on a virtual-storage concept for automatic

memory allocation. Hutchinson et al. [5] demonstrated a

duality between prefetching and queued writing with parallel

disks, involving read-once accesses and interleaved access

to striped sequences. Dash and Demsky [2] presented a dis-

tributed transactional memory system that attempted to auto-

matically hide network latency by speculatively prefetching

and caching objects. Megiddo and Modha [9] proposed

a cache replacement policy named Adaptive Replacement

Cache that maintained two LRU lists of pages to increase hit

ratio. Although these techniques can significantly improve

I/O performance, there are few caching and prefetching

techniques targeting highly interactive visualization appli-

cations.

III. BACKGROUND

A. Interactive Scientific Visualization

The data generated from a scientific simulation is typically

volumetric, multivariate, and time-varying. Volume visual-

ization techniques are often used to depict different aspects

of variables and their possible relationships. Figures 1, 2 and

3 illustrate two interactive volume visualization processes

using the datasets of a combustion simulation and a climate

simulation as examples. We can see that visualization oper-

ations can be roughly categorized into two types.

The first type of operations is view-dependent. As shown

in Figure 1, given a volume data Γ in R3, a user can

explore it in a spherical domain Ω ⊂ R3 enclosing Γ. We

assume that Ω and Γ are concentric, and the center is o.

The user can move a camera along a path P inside Ω,

Figure 2. A scientific visualization process using a climate simulation data.
The dotted line in the top image denotes an overview of a sample camera
path around the earth. The bottom image provides a top view of the camera
path in the climate simulation data, where the interplay between smoke
(colored in yellow to red) and typhoon (colored in white) is visualized.

and use rendering techniques, such as volume rendering [8]

to generate an image of Γ at a camera position on P.

For example, Figure 1 (a) and (c) show the variable of

stoichiometric mixture fraction (mixfrac) from two camera

positions along P. Figure 1 (b) shows a zoom-in image

corresponding to a camera position closer to this data.

The second type of operations is data-dependent. Apart

from moving the camera position, a user can also apply

visualization techniques (e.g., transfer functions [4], query-

based visualization [3], etc.) to control the visual properties

(e.g., visibility, color, shape, etc.) of different data variables

and regions. For example, Figure 1 (d) and (e) correspond to

a top view of the data. The image (d) shows an iso-surface

of mixfrac colored by the variable of scalar dissipation and

the image (e) shows the same iso-surface but colored by the

variable of OH radical.

Moreover, after perceiving certain regions of interest,

scientists often conduct detailed data analysis and visual-

ization using the combination of numerous queries based on

possibly complex functions of the primary variables. Take

climate simulations for instance in Figure 2, the bottom

image shows a mesoscale modeling of smoke (colored in

yellow to red) transport over the southeast Asian maritime

continent and the interplay of typhoon (colored in white).

Scientists can explore the dataset along a camera path as

shown in the red dotted line. An overview of the camera

path can be easily perceived from the earth in the upper

image.

The images (a)-(d) in Figure 3 illustrate the views from
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four different view angles and view positions on this path.

Scientists may want to collect statistical information useful

to describe the relationship between variables. As shown in

Figure 3, the statistic analysis results can be dynamically

generated and displayed with each image. They are three

histograms showing the distribution of water vapor mixing

ratio (QVPOR), wind magnitude, and a correlation matrix of

151 primary variables for the regions seen from the images.

These results can be used to assist scientists in their analysis

tasks [13], and gain interactive feedbacks according to their

views.

Figure 3. The images (a)-(d) are the four views generated from the different
view angles and positions along the path. At the left of each image, there are
two histograms and a correlation matrix corresponding to the distribution of
QVPOR, wind magnitude and the correlation among 151 primary variables
for the regions seen from the image. These analytic graphs are dynamically
updated according to views.

B. I/O Challenges

With ever increasing computer power, simulations pro-

duce increasingly large quantities of data to be visualized,

which has imposed severe challenges to carry out interac-

tive visualization with these view-dependent and/or data-
dependent operations. A typical issue is that a volume data

generated from a large-scale simulation cannot be entirely

loaded into the memory layer (e.g., main memory or GPU

memory) immediately accessed by a processing unit (e.g.,

CPU or GPU). A commonly used strategy is to only load

the visible data regions that could be considerably smaller

than the entire data. Furthermore, when a user moves the

camera position, the visible data regions are also changed.

Thus, it requires to quickly move data between faster (but

smaller) memory and slower (but larger) memory, while

maintaining an interactive rendering speed. However, such

data movement is a major bottleneck in today’s many large-

scale scientific applications. Real-time data visualization and

analysis based on different view positions and view direc-

tions require an efficient data transferring and placement

solution.

Computer graphics and visualization communities have

developed sophisticated view-dependent algorithms to opti-

mize data movement according to a user’s view [12]. The

basic idea is to first build a multi-resolution representation of

Figure 4. The orange (green) region corresponds to the view frustum or
the visible region of the camera at the position u (v).

data, and then for a data region is far from the camera, only

its coarser representation needs to be loaded and rendered.

This idea is based on a simple fact that the viewed area

is reduced for an object moving away from the camera.

Conventional data replacement policies, such as LRU, are

used to keep the data region most recently seen in faster

memory.

However, for data-dependent operations, the full extent

of visible data is often required to generate an accurate

depiction of data (e.g., the shape and color of the iso-surface,

or the statistics of a variable within a region of interest)

for gaining detailed scientific insights. These operations are

based on the functions of variables, and this fact implies that

we must consider every data element to accurately evaluate

the functions, such as the coloring of the iso-surface in

the images (e) and (d) of Figure 1 and the calculation of

the histograms and correlation matrix shown in the images

(a)-(d) of Figure 3. However, these complex functions are

typically a priori unknown and not easily invertible. Further-

more, there is not enough space in the memory for loading

the whole data of all variables to compute the correlation

matrix. This presents a difficulty for realizing performance

either by indexing the variables in a preprocessing step, or by

traditional multi-resolution approaches that may defeat the

original purpose of performing high-resolution simulations.

In addition, data access patterns in visualization are also

highly influenced by camera paths that can be randomly

or nearly randomly formed by a user exploration. Thus,

it is very challenging to predict data access patterns using

conventional data-dependent solutions.

IV. OUR APPROACH

We present a novel approach to predict data access

patterns and minimize data movement by bridging view-
dependent and data-dependent strategies. Compared to ex-

isting techniques, our approach can significantly improve

the effectiveness of data caching (i.e., reusing data blocks

in faster memory) and prefetching (i.e., overlapping data

movement with computation). Our approach is based on two

observations:
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Figure 5. The overview of our method.

Observation 1: The visible data regions can be very similar

among the camera positions within a certain small vicinal

area in Ω. As shown in Figure 41, the view frustums (i.e.,

the visible regions) of two nearby camera positions, u and v,

are largely overlapped. This implies that, although a camera

path P can be rather random within Ω, the view frustum

of any position w on P can be approximated by a nearby

point u or v in Ω, where u or v may not be exactly on

P. This property can be used to improve the effectiveness

of data caching, which is to maximize the reuse of data

blocks in faster memory. As there may exist overlapping

data, we could prefetch the data that currently is not on the

fast memories for next view point on a camera path.

Observation 2: Scientists often use their domain knowledge

to narrow their exploration of certain regions of interest. A

considerable amount of data can be pre-filtered out for their

study. For example, for the climate simulation data shown

in Figure 3, scientists mainly focus on the regions that are

severely contaminated by PM10 (particulate matter colored

in yellow to red) and are interacted with the typhoon (colored

in white), and may neglect the ambient regions. This implies

that we can derive a measure to quantify the importance of

data, and arrange the placement of data along a memory or

storage hierarchy according to data importance. Specifically,

we may not need to load the data of an ambient region

frequently, and can store them in a slower memory while

we can place an important region in a faster memory closer

to the processing unit.

A. Overview

Figure 5 shows the overall process of our method that

has three steps. Without loss of generality, we assume that

a volume data is divided into a set of uniform-size blocks.

In Step 1 (Section IV-B), based on Observation 1, we

sample camera positions in Ω according to view directions

and distances with respect to the center of Ω. We then

construct a look-up table, Tvisible, where the key of the table,

< l,d >, is a tuple of view direction l and distance d of a

sampling camera position and each key corresponds to the

visible data blocks.

In Step 2 (Section IV-C), based on Observation 2, we

quantify the importance of each data block using an entropy

measure, and pre-load the important blocks to relatively

faster memory levels. A table, Timportant , containing the

importance information of data blocks will be constructed

1For clarity, we use the 2D square and circle in the figures and examples.

Figure 6. Camera position sampling. Each orange point represents a
sampling position v. φ is a small spherical domain centered at v. For a green
point v′ inside φ , the light blue blocks intersect with the visual frustum of
the camera at v′, and thus are visible at v′. The view angle of the frustum
is θ .

for data prefetching process. Specifically, after building

Tvisible based on the sampling camera positions, we only

prefetch visible data blocks with high importance instead

of the entire set of blocks if the total size of predicted

data blocks exceeds the cache size in fast memory. These

two steps are performed as one-time pre-processing before

visualization.

In Step 3 (Section IV-D), Tvisible and Timportant are used

to optimize I/O during rendering with possibly dynamically

changed transfer functions and view positions. In our I/O

optimization, for each position on a camera path, we look

up Tvisible to load the corresponding visible blocks to faster

memory for rendering. We also leverage Timportant to pre-

load the important blocks to faster memory. Thus, during

rendering, only a few blocks will be replaced by LRU policy.

Our method can better predict future data requests and make

a more informed prefetching decision to reduce I/O cost and

support highly interactive visualization.

B. Camera Position Sampling

Based on Observation 1, we develop a method to predict

the data blocks that are visible from a certain position on a

camera path.

We first sample a number of camera positions in Ω,

as shown in Figure 6. In general, the larger number of

camera positions in Ω we sample, the higher accuracy

the prediction will have. However, for a larger number of

sampling positions, the total time of building the table Tvisible
will be longer, and the look-up time for prefetching data in

Step 3 will be longer as well, thus increasing the overhead.

To determine an appropriate number of sampling camera

positions, we conducted a test based on a random camera

path with the view direction changes within 10-15 degrees.

We fixed the other parameters, and only changed the number

of sampling positions in Step 1. Figure 7 illustrates the test

of the comparison of miss rate and I/O time (i.e., the time

to load the missed data block) between different numbers of

sampling positions on four datasets shown in Table I. Each

camera position v corresponds to a view direction l = �vo
and a distance d =‖ �vo ‖, where o is the centroid of Ω.
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Figure 7. (a) and (b) show the comparison of miss rate and I/O time
between different number of camera position sampling, respectively.

As seen from Figure 7 (a), the higher number of sampling

points, the lower miss rate we can obtain. However, as shown

in Figure 7 (b), the I/O time with 25,920 sampling points

has the lowest I/O time, and the I/O times with 72,000

and 108,000 sampling points are higher. This is because

the saving from a reduced miss rate can not suppress the

increase of query time in a larger look-up table. Thus, the

I/O overhead will be higher.

We then compute the visible blocks within a vicinal

area of each sampling camera position v. We build a small

spherical domain φ centered at v as shown in Figure 6. We

sample several points v′ inside φ . The number of sampling

points v′ in a vicinal area mainly depends on the radius of

this area. The zoom-in part in Figure 6 shows the sampling

points in φ . Given a view angle θ of the view frustum of

the camera, we assume the angle between a block b and

a camera position v′ is ϕ . If ϕ is less than θ/2, then b
intersects with the frustum and thus is visible. We can easily

compute ϕ as:

ϕ = arccos(
�v′bi · �v′o

‖ �v′bi ‖‖ �v′o ‖ ), (1)

where bi (i∈ [0,7]) are the coordinates of eight corner points

of b, and o is the centroid of the volume, �v′bi and �v′o are two

vectors, and ‖·‖ is the L-2 norm operator. After computing

all visible blocks for each point v′ within φ , we use a union

operation to gather the set Sv of unique visible blocks for

v. The key, which is a tuple of the view direction l = �vo
and a distance d =‖ �vo ‖ combined with its corresponding

visible data block set Sv, will be inserted into the look-up

table Tvisible. By that analog, we construct Tvisible after we

compute the set Sv of visible blocks for each position v.

Each entry in Tvisible is a key-value pair, where the key is the

tuple < l,d > denoting a sampling position v, and the value

is Sv. This table is only computed once as a pre-processing

step. Moreover, it is independent to specific datasets and

only depends on the views and the total block numbers of

a volume.

The selection of the radius r of φ determines the accuracy

of our prediction of data blocks during visualization. As

shown in Figure 6, we aggregate the view frustums of v′ and

compute the visible blocks accordingly. If r is too large, the

aggregated view frustum of φ can cover the whole volume,

and thus incur over-prediction. Similarly, if r is too small,

we under-predict the visible blocks.

In addition, the radius r of φ must be larger than the

distance between two camera positions, because our goal is

to predict the blocks that will be used for the next camera

position on the camera path. That is, the vicinal area of each

sampling position should contain the next camera position on

a camera path. According to our observation, an ideal case is

that the total size of the predicted and current visible blocks

is equal to the cache size in faster memory, so that we can

take full advantage of faster memory and more accurately

prefetch the visible blocks for the next view point on a

camera path. As shown in Figure 8, we hope that the blue

blocks, corresponding to the predicted visible region from

the φ of a camera position v, can be held in faster memory.

We can estimate the size of blue blocks by computing the

aggregated frustum (the green region) in Figure 8. Therefore

the radius r of φ is decided by the view angle θ of the

frustum, the view direction l, the view distance d, and the

cache size of faster memory. Among these parameters, the

view distance d can be changed more dynamically during

interactive visualization. Intuitively, if the camera is far from

the volume, the visible region is larger than the case when

the camera is near from the volume. Thus, the radius r
should be adjusted according to the view distance d to

improve the accuracy of our prediction of data blocks during

rendering.

The distance between two view points on a camera path

is also an important factor impacting on the radius r of

φ , because we hope the vicinal area φ of each sampling

camera position could contain the next camera position on a

camera path. To satisfy this condition, we may need a bigger

radius r, which however will contribute to over-prediction

and cause the size of predicted data blocks larger than fast

memory. To address this problem, we can fully make use

of the importance information of data blocks which will be

introduced in detail in Section IV-C. We only select the most

important blocks in the set Sv for each sampling point rather

than keeping all the blocks in Sv in the look-up table Tvisible.

Section V-B2 will detail the parameter choices of r.

The data block size also plays an important role in the

performance of our algorithm. We need to consider the trade-

off between the number of I/O operations and the size of

accessed data blocks. We experimented different block sizes

to minimize the I/O overhead. The detailed discussion of

choices of block size will be provided in Section V-B1.

C. Important Block Quantification

Locating the most commonly used blocks at faster mem-

ory is the key for fast visualizing large data, as timely results

are critical to many applications such as on-demand query

and real-time visualization. For the initial placement of data,
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Figure 8. The model to select a radius of a small spherical domain φ .

instead of placing all data blocks on slower memory, we

estimate the important blocks and pre-load them to faster

memory.

In this work, we select Shannon’s entropy calculation in

information theory to quantify the importance of a block.

Shannon’s entropy H(x) defines the information content of

a random variable x as:

H(x) =−∑
x∈X

p(x)logp(x), (2)

where p(x) is the probability mass function of x. This is a

measure of the uncertainty about a given random variable

and also indicates how much information the dataset con-

tains [17]. This provides a measure to identify important data

blocks of the volume, and has a large contribution towards

the total uncertainty of a group of blocks, because the blocks

with a small variation in their values often denote ambient

regions, which usually have similar intensity values. The

blocks with high entropy have high likelihoods of presenting

important areas in the volume dataset. For example, in a

combustion simulation dataset, the regions of which values

have greatest changes tends to be the most interesting part

for domain scientists. We build the table Timportant by sorting

the values of entropy for all the blocks, which allows us to

select important blocks and put them on faster memory.

As discussed in Section IV-B, the importance information

for each data block can be used to predict visible data blocks

when the next view point is relatively far from the previous

one on a camera path and when a large vicinal area around a

sample point would result in over-prediction. In this case, we

should only insert the block IDs with higher entropies into

the look-up table Tvisible for the prediction of visible regions

in Step 1, so that we can identify the blocks with a higher

possibility to be used for the next view point. This method

facilities interactive visualization when users conduct data-
dependent operations (e.g, tuning transfer functions) by their

domain knowledge.

D. Application-Aware I/O Optimization

Based on our camera position sampling and important

block quantification, we develop an application-aware I/O

optimization technique for large scientific visualization,

Algorithm 1 Application-aware I/O optimization in large-

scale scientific visualization
1: Let vec b record visible block IDs from a view point

2: Let vec f ast record block IDs on fast memory

3: Let num block record the number of blocks

4: Let time[num block] record the latest used time of each

block

5: Initial vec b ← φ , time[num block] ← -1

6: Load Tvisible and Timportant
7: Load the block IDs whose entropy values greater than

a threshold σ in Timportant into vec f ast
8: for each view point vi on a camera path P do
9: for each block b j in the volume do

10: if b j is visible then
11: vec b← b j
12: end if
13: end for
14: for each block b j in vec b do
15: if b j is not in vec f ast then
16: Fetch b j from slow memory and replace a block

in vec f ast with the lowest value in time and its

value in time should be less than i
17: end if
18: time[b j] = i
19: end for
20: // Overlap rendering and prefetching

21: Render the visible blocks

22: During rendering, find the nearest sampling view

point v′i from vi in Ω; look up Tvisible to find the

blocks corresponding to the key v′i, and prefetch the

ones with the entropy values greater than a threshold

σ ; during prefetching, replace the blocks in vec f ast
that have the lowest values in time and their values

in time are less than i
23: end for

which can achieve a lower miss rate and a higher I/O speed

than traditional methods. This algorithm consists of three

major phases as shown in Algorithm 1.

First, we conduct initialization and pre-load important

blocks to fast memory according to our important block

quantification (Lines 1-7).

Second, during a user interactive exploration, for each

view point vi on a camera path P, we compute the visible

blocks using our camera sampling. Then we check if all

visible blocks are stored on the fast memory close to the

computing unit. If not, we fetch the blocks from the slow

memory and the least recently used items are replaced

(Lines 8-19).

Third, after all blocks are located in the fast memory,

the rendering operation starts. If we use traditional meth-

ods such as FIFO and LRU to conduct data placement,

I/O is idle during the rendering time because there is no
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Table I
DATASETS USED IN OUR EXPERIMENTAL STUDY.

name description resolution #variables size

3d ball a synthetic dataset 1024×1024×1024 1 4GB
li f ted mix f rac a combustion simulation dataset 800×686×215 1 472MB

li f ted rr a combustion simulation dataset 800×800×400 1 1GB
climate a climate simulation dataset 294×258×98 244 7.2GB

prediction scheme to prefetch the data for the next step.

In our algorithm, we take full advantage of rendering time

to prefetch the data which may be used to the next view

point on the camera path. Given a random camera path P,

for each view point vi on P, we find the nearest sampling

point v′i from vi in Ω, so that it is easy to prefetch the most

frequent blocks according to the look-up table Tvisible before

rendering, and replace the blocks which are least recently

used on the current view point. Although prefetching all the

blocks to the fast memory could dramatically improve the

prediction accuracy and decrease the miss rate for the next

rendering pass, it might lead to a high overhead. To further

enhance the performance, we can fully overlap prefetching

and rendering, and combine the importance information in

Timportant with our prefetch scheme, which is to prefetch the

blocks with the entropy values of greater than a specified

threshold σ (Line 21-22). Thus, the total processing time

will be significantly lower than traditional methods.

V. RESULTS AND DISCUSSION

We present the experimental results of our I/O optimiza-

tion method on the performance of volume rendering using

a synthetic dataset and several real simulation datasets of

different resolutions. We evaluated our method with differ-

ent camera paths, transfer functions, and sampling camera

positions. The conventional FIFO and LRU methods were

used in our comparison study.

A. Experimental Datasets and Environment

Table I lists the datasets used in our experiments. A

synthetic dataset 3d ball models a 3D ball with continuous

changes of intensity inside. li f ted mix f rac and li f ted rr
are two real combustion data sets, and climate is a time-

varying climate data set. All datasets consist of 4-byte

floating-point values. Two different types of camera path

were used in our experiments. One type of camera path is

a spherical path with different degree intervals for camera

positions, while another type of camera path is a random

path with different degree changes for each camera position.

The total number of sampling positions along a camera path

is 400.

In our experimental study, we used a desktop with an 8X

Intel Core i7 3.6GHz CPU. We used a three-level memory

hierarchy containing 16GB DRAM, a 512GB solid-state

drive (SSD) and a 3TB hard disk drive (HDD). We tested

the I/O performance across these three levels. We employed

a GPU-accelerated volume rendering, and applied our data

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure 9. Miss rate between different block divisions.

replacement for transferring a dataset from the HDD to

the SSD to the DDRM. We neglected the data transferring

between the DRAM and the GPU memory in this study. The
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Figure 10. A mathematical model for deciding the radius of spherical area
around each sampling points.

ratio of cache size is 0.5 between two successive memory

levels (i.e., for a dataset stored on the HDD, the cache sizes

on the SSD and the DRAM are 50% and 25% of the dataset

size, respectively).

Our goal is to lower the I/O time by reducing the miss

rate across the levels of the memory hierarchy. Although

the summation of the prefetching time and I/O time might

be larger than the traditional method, the prefetching time

can be overlapped and hidden by rendering time. Thus, miss

rate is a very important metric in our experiments. For all

experiments, we measured the total miss rate and the I/O

time across DRAM, SSD and HDD, and the total time

combined with the I/O and the rendering. We compared our

method with the FIFO and LRU methods. Our method refers

to as OPT in the figures.

B. Parameter Choices

There are two parameters which most influence the per-

formance of our optimized algorithm: the block size and

the radius of spherical area around each sampling point

when we build a camera position sampling look-up table.

We conducted experiments to study the influence of these

parameters on the performance of our algorithm.

1) Block size: The block size influences the time to

load data blocks into memory. To study the impact of this

parameter, we performed a sequence of experiments using

the 3d ball dataset. The block size tested were 32×32×64,

32× 64× 64, 64× 64× 64, 64× 64× 128, 64× 128× 128,

128×128×128. We compared the miss rate between our op-

timized method and the FIFO and LRU methods. Figures 9

(a)-(g) illustrate the miss rate tests based on a spherical

camera path with the view direction changes of 1, 5, 10,

15, 20, 25, 30 and 45 degree per sampling camera position,

respectively. Figures 9 (h)-(n) demonstrate the miss rate tests

based on a random camera path with the view direction

changes between 0-5, 5-10, 10-15, 15-20, 20-25, 25-30 and

30-35 degree per sampling camera position, respectively.

Figure 11. The total I/O and prefetching time over 400 camera positions
using the optimal r computed by our method and the pre-defined r values.

Figure 9 clearly shows that our method is significantly

superior to FIFO and LRU no matter how many blocks are

divided. When the camera position changes within a small

range such as 0-5 degree on either a spherical or random

camera path, we can see that smaller block sizes reduce the

total miss rate. However, when the camera view direction

changes within a larger range, different block sizes do not

show a considerable difference. This is because the miss rate

mainly depends on the data replacement across a memory

hierarchy and the smaller block size will increase the total

number of replaced blocks. We found that the range of the

total block number between 1024 to 4096 can reduce the

miss rate. The determination of block size is also a trade-off

between the number of I/O operations and the size of data

read. We recommend that selected block sizes are multiples

of the read buffer size.

2) Radius of spherical area around a sampling point:
The radius r of spherical area φ around each sampling point

(Section IV-B) is another important parameter in our method.

In order to choose a suitable value for this parameter, we

build a mathematical model to estimate a good range, as

shown in Figure 10. We define a Cartesian coordinate system

with the origin at the center of the volume. The edge size

of the volume is normalized to 2, and the corresponding

coordinates are from -1 to 1. Assume v is a sampling point

with a distance to the origin is d. For each small sampling

point in a small spherical region φ with the radius r, we

can construct a frustum between two parallel planes of the

volume. If we aggregate the frustums of all the sampling

points in φ , we can obtain a bigger frustum ζ (the light

green region in Figure 10) with a view angle θ and the two

radius lies between the volume are r′ and r′′, respectively.

As we hope fully take advantage of fast memory, the ideal

situation is to put the whole frustum between the volume in

fast memory. In other words, the volume of the frustum ζ
should be less than or equal to the size of fast memory. This

give us:

πr′′2 h
3 −πr′2 h′

3

8
=

cache size of fast memory
cache size of slow memory

, (3)

where πr′′2 h
3 −πr′2 h′

3 is the volume of ζ , and 8 denotes the

normalized volume size. According to Figure 10, we can
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(a) (b)

Figure 12. Miss rate across a spherical path (a) and a random path (b).

easily derive:

r′ =
rh′

h′′
= tan(

θ
2
)h′

= tan(
θ
2
)(d−1+

r
tan( θ

2 )
)

(4)

and

r′′ = tan(
θ
2
)h = tan(

θ
2
)(d +1+

r
tan( θ

2 )
) (5)

Thus, we can replace r′ and r′′ in Equation 3 and obtain the

optimal r as:

r =

√
4× cache size of fast memory

π× cache size of slow memory
− 1

3
tan(

θ
2
)2−d× tan(

θ
2
) (6)

We can see that if we fix the view angle and the ratio

of cache size between fast memory and slow memory, the

optimal r needs to be dynamically computed according to

the distance d.

To verify the correctness of Equation 6, we performed

a test using the li f ted rr dataset that was partitioned into

1024 blocks with the block size 50×100×50. We fixed the

view angle and applied a camera path with 400 positions.

The normalized volume edge size is 2. We compared the

I/O time and the prefetching time between the optimal r
computed by Equation 6 and the pre-defined r values 0.1,

0.075, 0.05, and 0.025 with respect to the normalized volume

edge size. As shown in Figure 11, our method archived the

lowest amount of time for I/O and prefetching. In practice,

a user may often zoom-in or zoom-out during an interactive

visualization, resulting in a dynamically changed d value. In

this case, our method can automatically compute the optimal

r value tailored to different d values.

C. Effect of Camera Paths

Figure 12 (a) shows the comparison of miss rate across

a spherical path with different degree intervals using the

3d ball among three methods: FIFO, LRU, and our opti-

mized method. The 3d ball dataset is divided into 2048

blocks. As shown in Figure 12 (a), a spherical path with

1-degree change per camera position has the least miss rate

among three methods and the miss rate using our optimized

method is the one-fourth of the miss rates of the other two

(a)

(b)

Figure 13. The total I/O and prefetching time with different ratios of
cache size over 400 camera positions using FIFO, LRU, and our optimized
method.

methods. With a larger degree change per camera position,

the miss rate gradually increases. The reason is that a smaller

view direction changes, the less the number of replaced

blocks is. The miss rates of our method are less than half

of the miss rates of FIFO and LRU.

Figure 12 (b) compares the miss rates among FIFO, LRU,

and our method from different degree changes per camera

position on a random camera path on the 3d ball dataset,

which is divided into 2048 blocks. The path has 400 camera

positions with randomly different d and l values. The miss

rates were calculated over these directions. The result shows

that our method has lower miss rates, almost one third miss

rate of FIFO and half of LRU.

D. I/O Latency

To show the I/O latency, we tested the total time including

the I/O, prefetching and rendering times on 3d ball dataset

with 4096 blocks. Figure 13 compares the results of three

methods with different view direction changes on a random

camera path. In our method, the total time is equal to

the summation of the I/O time, and the maximum of the

prefetching time and the rendering time. This is because

the prefetching time using our optimized method can be

overlapped by the rendering time for the most cases. Using

FIFO or LRU, the total time is equal to the summation of

the I/O time and the rendering time.

In Figure 13 (a), the ratio between the fast memory size

and the slow memory size is 0.5. When the view direction

changes within 10 degrees, our total time can be decreased

up to 12% than the LRU method and 25% than the FIFO

method. However, our total time appears longer when the

view direction change are larger than 10 degrees. This is

because the replaced blocks increase with respect to larger
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view direction changes. Given a limited fast memory size,

more predicted visible blocks may not be held in the cache.

In this case, the prefetching time is longer for loading missed

predicted visible blocks.

To tackle this situation, we can enlarge the cache size.

Figure 13 (b) shows the latency results when we set up the

ratio between the fast memory size and the slow memory

size is 0.7. In this setting, more predicted visible blocks

can be held in the cache. Our method achieves the lowest

total time even the view direction changes are within 10-15

degrees, and the speedup is 8.6% to LRU method and 19.7%

to FIFO method.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we characterize data access patterns in

interactive large-scale scientific visualization. The unique

features of our solution are to model the similarity of data

access in a 3D visualization space and to leverage the data

importance derived from domain knowledge. Therefore, our

solution can achieve an optimal I/O time even for a user’s

random exploration. In our experimental study, we tested

different parameter choices and verified the effectiveness of

our designed models. The performance of our method is

superior to the conventional methods used in visualization.

In the future, we would like to extend our method for

parallel data fetching and rendering. In particular, we plan

to study data partitioning and distribution schemes by lever-

aging data importance information. We also will experiment

our method on visualization with different user interac-

tion techniques, such as virtual reality with head-mounted

displays. These use cases may require a faster interactive

response, and impose more challenging I/O stresses on run-

time large-scale data processing.
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